
Categorical Version Control

Dylan Wallace

March 21, 2025

1 / 25

:KDW�LV�YHUVLRQ�FRQWURO"

$ % &

FRPPLW FRPPLW

.HHS�WUDFN�RI�FKDQJHV

$ %

FRPPLW

.HHS�WUDFN�RI�FKDQJHV

(QDEOH�&ROODERUDWLRQ

(QDEOH�&ROODERUDWLRQ

$Q�([HUFLVH

"""

$Q�([HUFLVH

"""

&DQ�ZH�GHVLJQ�D�V\VWHP�
ZKHUH�HYHU\�PHUJH�VXFFHHGV"

Version Control Category

Goals:

1 ”Mathematicize” the notion of files and
diffs/patches

2 Express our version control system in the
language of Category Theory

3 Use results in Category Theory to make
statements about our system (which will
hopefully solve our issue!)

2 / 25

Basic Category Theory

Definition: Category

A category C is an algebraic structure consisting of a collection of objects
Ob(C) and for every pair of objects A,B ∈ Ob(C), a set of morphisms
Hom(A,B) such that the following conditions hold:

1 For any f ∈ Hom(A,B), g ∈ Hom(B,C), ∃g ○ f ∈ Hom(A,C) (composition)

2 idX ∈ Hom(X,X) that acts like the identity for all X ∈ Ob(C).

Examples:

1 The category of sets Set, where elements of Ob(Set) are sets and
morphisms are functions between sets

2 The category of vector spaces VectF over a field F, with morphisms linear
transformations between vector spaces

and there are many more

3 / 25

Basic Category Theory

Now that we have categories, we want to define relations between them:

Definition: Functor

Given two categories C and D, a functor F ∶ C → D is a mapping consisting of

1 a function on objects F ∶ Ob(C)→ Ob(D)

2 for any two X,Y ∈ Ob(C), a function on morphisms
F ∶ Hom(X,Y)→ Hom(F (X), F (Y))

such that the following hold:

1 F (idX) = idF (X) ∈ Hom(F (X), F (X))

2 For f ∈ Hom(X,Y) and g ∈ Hom(Y,Z) for X,Y,Z ∈ Ob(C), we have
F (g ○ f) = F (g) ○ F (f)

From here on out we’ll just say X ∈ C instead of X ∈ Ob(C) and f ∶X → Y
instead of f ∈ Hom(X,Y) whenever it isn’t ambiguous !

4 / 25

Limits: Examples

Products and Coproducts:

X

{1,2,3} × {4,5,6}

{1,2,3} {4,5,6}

π1 π2

{1,2,3} {4,

{1,2,3,4,5,6}

X

i1 i2

f

We want to generalize this notion to all ”subsets” of a category, not just those
with two elements and (and no morphisms)

5 / 25

Limits

Example category C:

X Y Z

V W

f

h

g

j
k

l

with j ○ f = h and l ○ j = k.

Then we might want to consider a ”subset” of the category, called a diagram:

X

V W

h

l

We will formalize this notion

6 / 25

Limits

Consider a category J with the following elements:

A B C
α β

then define a functor D ∶ J → C with D(A) =X,D(B) = V,D(C) =W ,
D(α) = h,D(β) = l so that the ”image” of D is our diagram from before.
Formally, we call the functor D itself the diagram.

A B C

X V W

α β

h l

D D

7 / 25

Limits

For a given diagram, consider all the possible ”cones”:

X V W

A

ψXA

h l

ψV A

ψWA

X V W

B

ψXB

h l

ψV B

ψWB

etc...

where the induced diagram commutes (e.g. ψV A ○ h = ψXA). Technically these
are called cocones (like cones but in the reverse direction). For shorthand, we’ll
refer to our diagram as D and write our cocones as ψA ∶D → A or ψB ∶D → B.
(BTW THIS IS NOT RIGOROUS AT ALL) Likewise, we can imagine a cone
φA ∶ A→D corresponding to

A

X V W

φAX
φAV

φAW

h l

8 / 25

Limits

Definition: (Co)Limit

For a given diagram D, a cone φX ∶X →D is called the limit of D if for any
other cone φY , there exists a morphism f ∶ Y →X such that φY I = φXI ○ f .
Likewise, a cocone ψX ∶D →X is called the colimit of D if for any other cocone
ψY , there exists a unique morphism g ∶X → Y such that ψIY = g ○ ψIX for all
objects I ∈D.
Usually we just refer to the object itself as the limit or colimit instead of the
diagram as a whole.

B

A

X V W

f

h l

X V W

A

B

h l

g

The idea is that limits and colimits capture the nature of the diagram D with
respect to morphisms into D, or morphisms out of D. If every diagram in a
category has a (co)limit, it is called (co)complete.

9 / 25

Version Control Category

Denote [n] = {1, . . . , n}, and Strings ={All possible arrangements of characters in
an alphabet}. Then we can define a file:

Definition: File

A file is a function F ∶ [n]→ Strings.

e.g.

→

F ∶ [3]→ Strings defined by:

F (1) = ”first line”

F (2) = ”second line”

F (3) = ”third line”

10 / 25

Version Control Category, contd.

Now that we have a mathematical notion of a file, we want to represent changes
to them:

Definition: Patch

Given two files F ∶ [n]→ Strings, G ∶ [m]→ Strings, a patch from F to G is an
injective increasing partial function p ∶ [n]→ [m], such that G ○ p(i) = F (i)
whenever p(i) is defined.

e.g. the following diagram is a morphism:

11 / 25

Version Control Category, contd.

Now we can formally define a category:

Definition: Category of Files

Define L to be the category of all files F ∶ [n]→ String for n ∈ N, where
morphisms are patches between objects and the identities are the identity patch
idn ∶ [n]→ [n].

With this, we can finally express what a merge conflict looks like in categorical
terms.

12 / 25

Version Control Category, contd.

What is a ”merge” in our category?

F G

H

g

h

F G

H X

g

h h′

g′

F G

H X

X ′

g

h h′

g′
∃!

13 / 25

Version Control Category, contd.

What is a ”merge” in our category?

F G

H

g

h

F G

H X

g

h
⌟

h′

g′

F G

H X

X ′

g

h
⌟

h′

g′
∃!

i.e. we want a colimit of the first diagram (”pushout”)

14 / 25

Version Control Category

ab acb

abd acbd

⌟

15 / 25

Version Control Category

ab acb

adb ??

Unfortunately not all diagrams in L have pushouts
16 / 25

Version Control Category

We care about colimits in general:

H5

F1 F2 F3 F4 F5

G3 G4 G5

Theorem

A category is cocomplete if it has an initial object (colimit of the empty diagram)
and all small pushouts.

So L isn’t cocomplete... what if we try to make it one?

17 / 25

Cocompletion of L

"⇒ instead of indexing files by [n], what if we use a more general object?

18 / 25

Cocompletion of L

Definition: Poset

A poset is a pair (X,≤) satisfying

1 x ≤ x for all x ∈X;

2 a ≤ b and b ≤ c "⇒ a ≤ c;

3 a ≤ b and b ≤ a "⇒ a = b.

Then we can modify our definitions of files and patches:

Definitions: Files and Patches

A poset file is a function F ∶X → Strings, where X is a finite poset.
Given two poset files F ∶X → String and G ∶ Y → String, a poset patch is an
ascending partial function p ∶X → Y with G ○ p(i) = F (i) for all i ∈X where p(i)
is defined.

Because [n] is a poset, every file is a poset file and every patch is a poset patch.

19 / 25

Cocompletion of L

Let P be the category of poset files, with poset patches as morphisms. Then
L ⊂ P , and P has limits of all diagrams in L. But is P a canonical cocompletion
of L? i.e.

L P

C

y

F
∃!F̃

?

Better question: Is P even cocomplete?

20 / 25

P isn’t cocomplete

It turns out it isn’t!

21 / 25

P isn’t cocomplete

It turns out it isn’t!

Theorem

The (free conservative finite) cocompletion of L is the category of files over
transitive sets (i.e. F ∶X → String over (X,<) where < is a transitive relation)
where morphisms are partial functions that obey transitivity.

22 / 25

P isn’t cocomplete

It turns out it isn’t!

Theorem (Mimram-Giusto)

The (free conservative finite) cocompletion of L is the category of files over
transitive sets (i.e. F ∶X → String over (X,<) where < is a transitive relation)
where morphisms are partial functions that obey transitivity.

Another formulation:

Theorem (Mimram-Giusto)

The (free conservative finite) cocompletion of L is equivalent to the full
subcategory of the category of graphs Ĝ whose objects are finite graphs with the
following property: For every path x↠ y, there exists exactly one edge x→ y.

23 / 25

Conclusions

1 The issue of conflict-free merging can be
solved only by indexing our files by a special
kind of graph

2 Systems that involve composition can be easily
“categorified”

3 Categorifyng systems can reveal special
insights that we otherwise could have missed

24 / 25

(Re)Sources

If you’re interested...

pijul.com

25 / 25

