Categorical Version Control

Dylan Wallace

March 21, 2025

{0 wisconsIN

UNIVERSITY OF WISCONSIN-MADISON

1/25

What is version control?

Keep track of changes

A B C
commit commit
TXT TN, TXT
myFile.txt myFile.txt myFile.txt
GNU nano 7.2
first line first line yl first line
second line > in-between line yl > in-between line
third line second line k] second line
ﬁhird line A third line

5 > last line

Keep track of changes

A B diff --git a/myFile.txt b/myFile.txt
index 20aeba2..960af23 100644
--- a/myFile.txt
commit +++ b/myFile.txt
TXT TXT first line
)) +> 1n-between line
myFile.txt myFile.txt socofd line
third line
first line first line (END)]
second }ine > in—-between line
third line second line
L third line

[

Enable Collaboration

TXT

myFile.txt

first line
> in-between line
second line

third line
TXT,
myFile.txt
first line
second line
third line TXT
myFile.txt

first line
second line
third line
> last line

Enable Collaboration

TXT

myFile.txt

first line
> in-between line
second line

third line 9
TXT
TXT _
myFile.txt
myFile.txt
GNU nano 7.2
gl first line
first line i > in—-between line
second line K| second line
third line TXT A third line
5 > last line
myFile.txt 6

first line
second line
third line

> last line

An Exercise

TXT

myFile.txt

first line
> in-between line
second line

third line
T
g 7?7
myFile.txt e
first line
second line
ﬁhird line TXT
myFile.txt

GNU nano 7.2 myFile.txt

l first line

v > a different in-between line
Kl second line

2 third line

5

A . v) I)
P> (/dev/s001) <dwall@dylans-mbp-5.lan> presentation git:(master) git merge my-branch
Auto-merging myFile.txt
CONFLICT (content): Merge conflict in myFile.txt

Automatic merge failed; fix conflicts and then commit the result.

Z -

K] second line
///’ third line \\\\\\

- GNU nano 7.2 myFile.txt

first line ~, 7?77
<<<<<<< HEAD

> 1n-between line

myFile.txt

first line

second line
third line

> a different in-between line
>>>>>>> my-branch

second line

third line

O 00O NONOTL P WN B

N
S\ stackoverflow About Products OverflowAl Q_ merge conflict

ﬁ Home Search ReSUItS Advanced Search Tips

9 Questions
Results for merge conflict

@ Tags Search options not deleted
22 Users 500 results Relevance Newest More ~
B Companies
5424 votes & How do | resolve merge conflicts in a Git repository?
LABS o How do | resolve merge conflicts in my Git repository? ...
& Job 3.7mviews 9it git-merge merge-conflict-resolution git-merge-conflict
obs

E' Q Spoike 122k asked Oct 2, 2008 at 11:31
Discussions

3243 votes @ | ran into a merge conflict. How do | abort the merge?

COLLECTIVES + | used git pull and had a merge conflict: unmerged: some_file.txt You are in the middle of a con-
Communities for your flicted merge. How do | abandon my changes to the file and keep only the pulled changes? ...
favorite technologies. 2.7m views

Explore all Collectives git version-control git-merge git-merge-conflict

3 Gwyn Morfey 33.6k asked Sep 19, 2008 at 13:21
TEAMS

= ° 13501 votes B} How do | force "git pull" to overwrite local files?

« Accepted main): git branch backup-main Jump to the latest commit on origin/main and checkout those files:

Ask questions, find git reset --hard origin/main Explanation: git fetch downloads the latest from remote without tryin...

answers and collaborate

at work with Stack git version-control overwrite git-pull git-fetch
Overflow for Teams.

RNA 154k answered Jan 17, 2012 at 0:02

Explore;Teams 18940 votes Y How to modify existing, unpushed commit messages?

v Accepted Git will "collect" all the commits in the last n commits, and if there was a merge somewhere in be-
tween that range you will see all the commits as well, so the outcome will be n +

git git-commit git-rewrite-history git-amend Community wiki EfForEffort

Can we design a system
where every merge succeeds?

Version Control Category W

Goals:

o Mathematicize” the notion of files and

diffs/patches

@ Express our version control system in the
language of Category Theory

o Use results in Category Theory to make
statements about our system (which will
hopefully solve our issue!)

2/25

Basic Category Theory

Definition: Category

A category C is an algebraic structure consisting of a collection of objects
Ob(C) and for every pair of objects A, B € Ob(C), a set of morphisms
Hom(A, B) such that the following conditions hold:

@ For any f e Hom(A, B), g € Hom(B,C), 3go f € Hom(A, C) (composition)
® idx € Hom(X, X) that acts like the identity for all X € Ob(C).
Examples:

@ The category of sets Set, where elements of Ob(Set) are sets and
morphisms are functions between sets

@® The category of vector spaces Vecty over a field F, with morphisms linear
transformations between vector spaces

and there are many more

3/25

Basic Category Theory

Now that we have categories, we want to define relations between them:

Definition: Functor

Given two categories C and D, a functor F : C — D is a mapping consisting of
@ a function on objects F': Ob(C) — Ob(D)

@ for any two X, Y € Ob(C), a function on morphisms
F :Hom(X,Y) -» Hom(F(X),F(Y))

such that the following hold:
O F(idx) = idp(x) € Hom(F(X), F'(X))

® For f e Hom(X,Y) and g e Hom(Y, Z) for X, Y, Z € Ob(C), we have
F(go f)=F(g)eF(f)

From here on out we'll just say X € C instead of X e Ob(C) and f: X - Y
instead of f € Hom(X,Y’) whenever it isn't ambiguous ®

4/25

Limits: Examples

Products and Coproducts:

X {1,2,3} {4,

{1,273} {456} (1,2 3456}

{1,2,3} {4 5,6} X
We want to generalize this notion to all "subsets” of a category, not just those
with two elements and (and no morphisms)

5/25

Example category C:

with jof=handloj=k.

Then we might want to consider a "subset” of the category, called a diagram:

We will formalize this notion

6/25

Consider a category J with the following elements:
a B
A— B ——C

then define a functor D : J - C with D(A) = X,D(B) =V,D(C) =W,
D(«) = h,D(B) =1 so that the "image” of D is our diagram from before.
Formally, we call the functor D itself the diagram.

A-—2yp_Fic

D D

XTVﬁW

7/25

For a given diagram, consider all the possible " cones”:

Xty tow X sy tow
Y(A / Y(B / etc...
v Yvp
Yw A YwB
A B

where the induced diagram commutes (e.g. ¥y 4 0oh =1%x4). Technically these
are called cocones (like cones but in the reverse direction). For shorthand, we'll
refer to our diagram as D and write our cocones as ¥4 : D — A or ¢y : D - B.
(BTW THIS IS NOT RIGOROUS AT ALL) Likewise, we can imagine a cone
¢a:A— D corresponding to

A
db:xx/l%ij
X tsv s w

8/25

Definition: (Co)Limit

For a given diagram D, a cone ¢x : X — D is called the limit of D if for any
other cone ¢y, there exists a morphism f:Y — X such that ¢y;=¢xro f.
Likewise, a cocone ¥ x : D — X is called the colimit of D if for any other cocone
1y, there exists a unique morphism g: X — Y such that ¢y = g ot x for all
objects [€ D.

Usually we just refer to the object itself as the limit or colimit instead of the

diagram as a whole.
/ ; \
X tsv 21w

h
The idea is that limits and colimits capture the nature of the diagram D with
respect to morphisms into D, or morphisms out of D. If every diagram in a
category has a (co)limit, it is called (co)complete.

7
N,

— <
-

03 4

9/25

Version Control Category

Denote [n] ={1,...,n}, and Strings ={All possible arrangements of characters in
an alphabet}. Then we can define a file:

Definition: File

A file is a function F': [n] — Strings.

e.g.
F : [3] — Strings defined by:

first line N F(1) ="first line"
thiva 1ine F(2) ="second line"
F(3) ="third line"

10 / 25

Version Control Category, contd.

Now that we have a mathematical notion of a file, we want to represent changes
to them:

Definition: Patch

Given two files F : [n] — Strings, G : [m] — Strings, a patch from F' to G is an
injective increasing partial function p: [n] - [m], such that G o p(4) = F (1)
whenever p(i) is defined.

e.g. the following diagram is a morphism:

b

o
SO

11 /25

Version Control Category, contd.

Now we can formally define a category:

Definition: Category of Files

Define L to be the category of all files F': [n] — String for n € N, where
morphisms are patches between objects and the identities are the identity patch

id, : [n] = [n].

With this, we can finally express what a merge conflict looks like in categorical
terms.

12 /25

Version Control Category, contd.

What is a "merge” in our category?

<
N?Q

|

13 /25

Version Control Category, contd.

What is a "merge” in our category?

F—2sa F_9%a
i TR
H HT>X

i.e. we want a colimit of the first diagram (" pushout”)

14 / 25

rsion Control Category

myFile.txt
first line
> in-between line
second line N
third line N
myFile.txt
myFile.txt
first line bl > in-between line
second line El second line
third line [third line
E > last line
~ myFile.txt ol

first line
second line _~
third line
> last line

abd —— acbd

15 / 25

Version Control Category

myFile.txt

first line
> in-between line

second line
third line
]

?7?

myFile.txt

first line
second line
third line

myFile.txt

myFile.txt

GNU nano 7.2
pl first line
pl > a different in-between line

k! second line
8 third line

ab —— acb

L

adb — 77

Unfortunately not all diagrams in £ have pushouts
16 / 25

Version Control Category

We care about colimits in general:

Gy —— Gy —— G5

Theorem

A category is cocomplete if it has an initial object (colimit of the empty diagram)
and all small pushouts.

So L isn't cocomplete... what if we try to make it one?

17/ 25

Cocompletion of L

GNU nano 7.2 myFile.txt
first line
<<<<<<< HEAD
> in-between line

> a different in-between line
>>>>>>> my-branch

second line

third line

= instead of indexing files by [n], what if we use a more general object?

18 / 25

Cocompletion of £ Y

Definition: Poset

A poset is a pair (X, <) satisfying
@ x<zforall zeX;

® a<bandb<ec = a<g
©®a<bandb<a =— a=b.

Then we can modify our definitions of files and patches:

Definitions: Files and Patches

A poset file is a function F': X — Strings, where X is a finite poset.

Given two poset files F': X — String and G : Y — String, a poset patch is an
ascending partial function p: X - Y with G op(i) = F(¢) for all i € X where p(2)
is defined.

Because [n] is a poset, every file is a poset file and every patch is a poset patch.

19 /25

Cocompletion of £ Y

Let P be the category of poset files, with poset patches as morphisms. Then
L cP, and P has limits of all diagrams in £. But is P a canonical cocompletion
of L7 i.e.

SWIEEN
=
N
w
eS|

Better question: Is P even cocomplete?

20/ 25

P isn't cocomplete Y

It turns out it isn't!

21 /25

P isn't cocomplete

It turns out it isn't!

Theorem

The (free conservative finite) cocompletion of L is the category of files over
transitive sets (i.e. F': X — String over (X, <) where < is a transitive relation)
where morphisms are partial functions that obey transitivity.

22 /25

P isn't cocomplete Y

It turns out it isn't!

Theorem (Mimram-Giusto)

The (free conservative finite) cocompletion of L is the category of files over
transitive sets (i.e. F: X — String over (X, <) where < is a transitive relation)
where morphisms are partial functions that obey transitivity.

Another formulation:

Theorem (Mimram-Giusto)

The (free conservative finite) cocompletion of L is equivalent to the full
subcategory of the category of graphs G whose objects are finite graphs with the
following property: For every path z — y, there exists exactly one edge = — y.

23 /25

Conclusions W

o The issue of conflict-free merging can be
solved only by indexing our files by a special
kind of graph

@ Systems that involve composition can be easily
“categorified”

e Categorifyng systems can reveal special
insights that we otherwise could have missed

24 / 25

(Re)Sources

If you're interested...

daT <1V > cs > arXiv:1311.3903v1

Computer Science > Logic in Computer Science

[Submitted on 13 Nov 2013]
A Categorical Theory of Patches
Samuel Mimram (LIST), Cinzia Di Giusto (LIST)

When working with distant collaborators on the same documents,
modifications brought by others as patches. The implementation «
and it is thus difficult to ensure that all the corner cases have bee
complementary approach: we introduce a theoretical model, whicl
We begin by defining a category of files and patches, where the of
incompatible, such a pushout does not necessarily exist in the cat
conflicting state. We provide an answer by investigating the free ¢
objects are finite sets labeled by lines equipped with a transitive r

pijul.com

25 / 25

