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Colorings and Van der Waerden’s theorem

N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .

Van der Waerden’s Theorem (1927): For any finite coloring of the natural
numbers and any integer k, there exists a k-term arithmetic progression in one
color

1-term arithmetic progression ∶ 1
2-term a.p. ∶ 2,6
3-term a.p. ∶ 1,4,7
4-term a.p. ∶ 5,8,11,14

. . .

and so on
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Erdos and Turán (1936)

● For a subset S ⊆ {1, . . . , n}, we can consider S as having a density of

dn(S) = #(S)
n
= fraction of elements in {1, . . . , n} that are in S.

● ...but how do we assign a density to an infinite set S ⊆ N?
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● For a subset S ⊆ {1, . . . , n}, we can consider S as having a density of

dn(S) = #(S)
n
= fraction of elements in {1, . . . , n} that are in S.

● ...but how do we assign a density to an infinite set S ⊆ N?

Upper density

For a set S ⊆ N, define the upper density of S as
d(S) = lim supn→∞ dn(S ∩ {1, . . . , n})

● P = {1,4,9,16, . . .} = {Set of all perfect squares} has d(P ) = 0, because the
chance of seeing a perfect square → 0 as we look at bigger numbers

● E = {2,4,6,8, . . .} = {Set of all even numbers} has d(E) = 1
2
, because every

other number is an even number, even for large numbers
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Erdos and Turán (1936)

FACT: If we have a finite coloring of N, then at least one color has an upper
density > 0.
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was true because some color with positive upper density has all the k-term
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Erdos and Turán (1936)

FACT: If we have a finite coloring of N, then at least one color has an upper
density > 0.

Ô⇒ Some people (Erdos and Turán) thought that Van der Waerden’s theorem
was true because some color with positive upper density has all the k-term
arithmetic progressions

Erdos-Turán Conjecture (1936) Szemerédi’s Theorem (1975)!

Any subset S ⊆ N with d(S) > 0 has a k-term arithmetic progression for all k.
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History of Szemerédi’s Theorem

1 1936: Conjectured by Erdos and Turán

2 1975: Proven by Szemerédi (combinatorics)

3 1977: Proven by Furstenberg (ergodic theory)

4 2001: Proven by Gowers (fourier analysis)

5 2006: Proven by Nagle et al. (hypergraph removal)
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1 1936: Conjectured by Erdos and Turán

2 1975: Proven by Szemerédi (combinatorics)
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1 1936: Conjectured by Erdos and Turán

2 1975: Proven by Szemerédi (combinatorics)
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History of Szemerédi’s Theorem

1 1936: Conjectured by Erdos and Turán

2 1975: Proven by Szemerédi (combinatorics)

3 1977: Proven by Furstenberg (ergodic theory) ← Today’s Talk

4 2001: Proven by Gowers (fourier analysis)

5 2006: Proven by Nagle et al. (hypergraph removal)
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What is Ergodic Theory?
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What is Ergodic Theory?

Q: When do systems exhibit mixing?

Figure: Coffee Mixing. Credit: Shtetl-Optimized (Scott Aaronson)
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What is Ergodic Theory?

Measure-Preserving System

Given a space X, a transformation T ∶X →X and a measure µ on X, a triple
(X,T,µ) is called a measure-preserving system (MP-system) if µ(E) = µ(T −1E)
for any* subset E ⊆X.

X

TT −1E

E

µ(E)

We can think of a measure-preserving system as a dynamical system where the
”size” of sets are preserved
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Furstenberg’s Proof

1 Find an appropriate measure-preserving system to model our problem

2 Prove that every measure-preserving system has a particular property (called
”SZ”)

3 Use the fact that our problem’s measure-preserving system being SZ to
prove Szemerédi’s Theorem
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Constructing our Measure-Preserving System

● {Sets of subsets of N} ≅ {Set of binary sequences} = 2N

S = {1,3,4,6, . . .}
⇔

{si} = 1,0,1,1,0,1, . . .
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Constructing our Measure-Preserving System

We want a condition for a binary sequence {si} having an arithmetic progression

Sets Sequences

S ⊆ N has a k-term a.p. if there are
n,m ∈ N with n,n +m,n + 2m, . . . , n +
(k − 1)m ∈ S

{si} ∈ 2N has a k-term a.p. if there
are n,m ∈ N with sn = sn+m =
. . . sn+(k−1)m = 1
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We want a condition for a binary sequence {si} having an arithmetic progression

Sets Sequences

S ⊆ N has a k-term a.p. if there are
n,m ∈ N with n,n +m,n + 2m, . . . , n +
(k − 1)m ∈ S

{si} ∈ 2N has a k-term a.p. if there
are n,m ∈ N with sn = sn+m =
. . . sn+(k−1)m = 1

WANT: Some T ∶ 2N → 2N and a way to express RHS in terms of T and set
inclusion
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Constructing our Measure-Preserving System

Shift Operator

Define the shift operator T ∶ 2N → 2N by T ({s1, s2, s3, . . .}) = {s2, s3, . . .}.

● i.e. the shift operator ”shifts” the sequence to the left by one

● Tn({s1, s2, . . . ,}) = {sn+1, sn+2, . . .}

● Define [1] = {Binary sequences {si} with s1 = 1} ⇔ S ⊆ N with 1 ∈ S.
● Then, T −n[1] = {Binary sequences with sn+1 = 1}
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Constructing our Measure-Preserving System

● Begin for a moment that {si} ∈ [1] and our k-term arithmetic progression
starts with 1.

● Then {si} has a k-term arithmetic progression if there exists m ∈ N with
{si} ∈ [1],{si} ∈ T −m[1], . . . ,{si} ∈ T −(k−1)m[1]

● Ô⇒ {si} ∈ [1] ∩ T −m[1] ∩ T −2m[1] ∩ ⋅ ⋅ ⋅ ∩ T −(k−1)m[1]
● Ô⇒ {si} ∈ ⋂k−1

i=0 T −im[1] = Im
● Then if our arithmetic progression doesn’t start with 1, then we can just

”shift” it to start at 1

● Ô⇒ exists n ≥ 0 (our ”shift” amount) and m ∈ N with Tn{si} ∈ Im
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Our Desired Property

The SZ property

A measure-preserving system (X,T,µ) is SZ if for any E ⊆X with µ(E) > 0, the
following holds true:

lim inf
N→∞

1

N

N−1

∑
n=0

µ(
k−1

⋂
i=0

T −inE) > 0
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lim inf
N→∞

1

N

N−1

∑
n=0

µ(
k−1

⋂
i=0

T −inE) > 0

● SZ Ô⇒ for some m ∈ N, we have µ (⋂k−1
i=0 T −imE) > 0

● so if we choose a measure so that µ([1]) > 0, then we have
µ (⋂k−1

i=0 T −im[1]) = µ(Im) > 0

● It turns out all measure-preserving systems are SZ! (Furstenberg’s
proof is 50 pages)
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Recap

We have:

● An almost-MP system (2N, T ), missing a measure

● A condition for a sequence having a k-term arithmetic progression, namely
∃n ≥ 0,m ∈ N with Tn{si} ∈ Im

● A guarantee that if we can find a measure µ on 2N, then (2N, T, µ) is SZ

● Many measures that satisfy this

● Specifically, we want to find a measure so that we can infer
µ (Im) > 0 Ô⇒ Tn{si} ∈ Im
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Construction of our measure

For the sake of clarity, we’ll write s = {si} from here.

● Define µN(E) = 1
N
⋅#(E ∩ {s, Ts, T 2s, . . . , TN−1s}) ∶= the fraction of

{s, Ts, . . . , TN−1s} that E contains.

● Then let µ = limN→∞ µN (the ”weak limit”)
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Then µ(E) > 0 only if E has a high density in Orb(s) = {Tns ∣n ∈ N} ∶= ”shifted”
elements of s, so µ is shift invariant and µ([1]) > 0.
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⋅#(E ∩ {s, Ts, T 2s, . . . , TN−1s}) ∶= the fraction of

{s, Ts, . . . , TN−1s} that E contains.

● Then let µ = limN→∞ µN (the ”weak limit”)

Then µ(E) > 0 only if E has a high density in Orb(s) = {Tns ∣n ∈ N} ∶= ”shifted”
elements of s, so µ is shift invariant and µ([1]) > 0.

Ô⇒ So (2N, T, µ) is an MP-system, so (2N, T, µ) is SZ, so µ (Im) > 0 for some
m ∈ N.

16 / 18



Almost at the end...

● µ(E) > 0, so (by construction of measure) there exists some
s′ = limj→∞ Tnjs ∈ Im.

● But Im is open in 2N, so there’s some J ∈ N such that Tnjs ∈ Im for j > J
(definition of limit).

● Hence if we let n = nj for j > J , then Tns ∈ Im = ⋂k−1
i=0 T −im[1]! ,
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Conclusion

What have we learned?

● We can model some combinatorics problems as dynamical systems, then use
ergodic theory to solve them

● More generally, we can apply fields of math to different fields

● It can be useful to re-prove results using different approaches
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