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Colorings and Van der Waerden's theorem Y

A coloring of N is a pattern of assigning a color to each number n € N.
If only a finite number of colors is used in a coloring, it is called a finite coloring.

Van der Waerden's Theorem (1927): For any finite coloring of the natural
numbers and any integer k, there exists a k-term arithmetic progression in one
color

1-term arithmetic progression : 1
2-term a.p.: 2,6
3-term a.p.:1,4,7

4-term a.p.:

and so on 2/18



Erdos and Turan (1936

® For a subset Sc{l,...,n}, we can consider S as having a density of
dn(5) = @ = fraction of elements in {1,...,n} that are in S.
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Erdos and Turan (1936

® For a subset S c{1,...,n}, we can consider S as having a density of
dn(S) = @ = fraction of elements in {1,...,n} that are in S.

® __.but how do we assign a density to an infinite set S ¢ N7

Upper density

Eor a set S € N, define the upper density of S as
d(S) =limsup,,_, . d,(Sn{l,...,n})

® P={1,4,9,16,...} = {Set of all perfect squares} has d(P) = 0, because the
chance of seeing a perfect square — 0 as we look at bigger numbers

* F=1{2,4,6,8,...} = {Set of all even numbers} has d(E) =
other number is an even number, even for large numbers

% , because every
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Erdos and Turan (1936

FACT: If we have a finite coloring of N, then at least one color has an upper
density > 0.
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Erdos and Turan (1936)

FACT: If we have a finite coloring of N, then at least one color has an upper
density > 0.

== Some people (Erdos and Turan) thought that Van der Waerden's theorem
was true because some color with positive upper density has all the k-term
arithmetic progressions

Erdos-Furan—Conjecture {1936} Szemerédi's Theorem (1975)!

Any subset S ¢ N with d(S) >0 has a k-term arithmetic progression for all k.
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History of Szemerédi's Theorem

@ 1936: Conjectured by Erdos and Turan
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History of Szemerédi's Theorem

@ 1936: Conjectured by Erdos and Turan

@ 1975: Proven by Szemerédi (combinatorics)

© 1977: Proven by Furstenberg (ergodic theory) < Today’s Talk
@ 2001: Proven by Gowers (fourier analysis)

@ 2006: Proven by Nagle et al. (hypergraph removal)
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What is Ergodic Theory?
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What is Ergodic Theory? Y

Q: When do systems exhibit mixing?

Figure: Coffee Mixing. Credit: Shtetl-Optimized (Scott Aaronson)
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What is Ergodic Theory? Y

Measure-Preserving System

Given a space X, a transformation 7': X — X and a measure p on X, a triple
(X, T, ) is called a measure-preserving system (MP-system) if u(E) = u(T7'E)
for any* subset £ ¢ X.

T
NN
X ’\’\ M(E§/

SO

We can think of a measure-preserving system as a dynamical system where the
"size" of sets are preserved 6/ 18



Furstenberg's Proof Y

@ Find an appropriate measure-preserving system to model our problem

@® Prove that every measure-preserving system has a particular property (called

"SZ")

© Use the fact that our problem’s measure-preserving system being SZ to
prove Szemerédi's Theorem
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Constructing our Measure-Preserving System )/

e {Sets of subsets of N} = {Set of binary sequences} = 2~
S=1{1,3,4,6,...}

<~

{si}=1,0,1,1,0,1,...
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Constructing our Measure-Preserving System )/

We want a condition for a binary sequence {s;} having an arithmetic progression

Sets | Sequences

S ¢ N has a k-term a.p. if there are {s;} € 2" has a k-term a.p. if there
n,meN with n,n+m,n+2m,....,n+ | aren,m € Nwith s, = sp1m =
(k—l)mES - Spt(k-1)m = 1
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Constructing our Measure-Preserving System )/

We want a condition for a binary sequence {s;} having an arithmetic progression

Sets ‘ Sequences

S ¢ N has a k-term a.p. if there are {s;} € 2% has a k-term a.p. if there
n,meN with n,n+m,n+2m,....,n+ | aren,m € Nwith s, = sp1m =
(k—l)mES <o Spt(k=-1)m = 1

WANT: Some T': 2% — 2 and a way to express RHS in terms of T and set
inclusion
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Constructing our Measure-Preserving System

Shift Operator

Define the shift operator T : 2% — 2N by T'({s1,52,53,...}) = {s2,53,... }.

® i.e. the shift operator "shifts” the sequence to the left by one

° Tn({517525~"a}) = {Sn+175n+27"'}
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Constructing our Measure-Preserving System

Shift Operator

Define the shift operator T : 2% — 2N by T'({s1,52,53,...}) = {s2,53,... }.

® i.e. the shift operator "shifts” the sequence to the left by one

Tn({51752, ey }) = {Sn+1,8n+2, ‘e }
Define [1] = {Binary sequences {s;} with s; =1} < ScNwith 1€ S.

Then, T7"[1] = {Binary sequences with s,,+1 = 1}
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Constructing our Measure-Preserving System )/

® Begin for a moment that {s;} € [1] and our k-term arithmetic progression
starts with 1.

® Then {s;} has a k-term arithmetic progression if there exists m € N with
{31} € [1]a {Sl} € T_m[1]7 R {31} € T_(k_l)m[l]
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Constructing our Measure-Preserving System )/

® Begin for a moment that {s;} € [1] and our k-term arithmetic progression
starts with 1.

® Then {s;} has a k-term arithmetic progression if there exists m € N with
{si}e[1],{s:} e T™™[1],..., {s;} e T-(k-Dm[1]
— {s;}e[1]nT™[1]nT>™[1]n---nT-k-Dm[1]
= {s;}eNFy T7™[1] =1,
® Then if our arithmetic progression doesn't start with 1, then we can just
"shift” it to start at 1

= exists n > 0 (our "shift” amount) and m € N with T"{s;} € I,
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Our Desired Property

The SZ property

A measure-preserving system (X, T, u) is SZ if for any E ¢ X with u(E) > 0, the
following holds true:

N-1 (k-1
hmlnf— > u(ﬂT "’E)>0

nO =0
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Lyl
lim inf — u( T_mE) >0
N-oco N 755 \i=0

* SZ = for some m €N, we have p (N T7"™E) >0

* so if we choose a measure so that u([1]) >0, then we have
p(MiZo T [1]) = u(Im) > 0

14 /18



Our Desired Property

The SZ property

A measure-preserving system (X, T, ) is SZ if for any E ¢ X with u(E) > 0, the
following holds true:

L (e
lim inf — u( T_mE) >0
N=eo N ;%7 \i-o

* SZ = for some m €N, we have p (N T7"™E) >0

* so if we choose a measure so that u([1]) >0, then we have
p(MiZo T [1]) = u(Im) > 0

® |t turns out all measure-preserving systems are SZ! (Furstenberg's
proof is 50 pages)
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We have:
* An almost-MP system (2, T"), missing a measure

® A condition for a sequence having a k-term arithmetic progression, namely
In > 0,m e N with T"{s;} € I,,

* A guarantee that if we can find a measure i on 2%, then (2Y, 7, ) is SZ
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We have:
* An almost-MP system (2, 7"), missing a measure

® A condition for a sequence having a k-term arithmetic progression, namely
In >0,m e N with T"{s;} € I,,,

* A guarantee that if we can find a measure p on 2N, then (2V, T, 1) is SZ
Next step: Find a specific measure so that p([1]) >0
® Many measures that satisfy this

® Specifically, we want to find a measure so that we can infer
p(lp) >0 = T"{s;} el

15 /18



Construction of our measure W

For the sake of clarity, we'll write s = {s;} from here.

* Define un(E) = - #(En{s,Ts,T?s,..., TN 's}) := the fraction of

{s,Ts,...,TN"1s} that E contains.
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Construction of our measure W

For the sake of clarity, we'll write s = {s;} from here.

* Define un(E) = - #(En{s,Ts,T?s,..., TN 's}) := the fraction of

{s,Ts,...,TN"1s} that E contains.
® Then let p=limpy_o pun (the "weak limit")
Then u(E) >0 only if E has a high density in Orb(s) = {T™s|n € N} := "shifted”

elements of s, so p is shift invariant and p([1]) > 0.

— So (2N, T, i) is an MP-system, so (2Y, T, ) is SZ, so p (I,,,) > 0 for some
m e N.

16 / 18



Almost at the end... W

* u(E) >0, so (by construction of measure) there exists some
s =1limj e T s € I,
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Almost at the end... W

* u(E) >0, so (by construction of measure) there exists some
s =1limj e T s € I,

® But I,, is open in 2V, so there's some J € N such that 7% s € I,,, for j > J
(definition of limit).

* Hence if we let n =n; for j > J, then T"s € I,,, = i T7™[1]! ©
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Conclusion W

What have we learned?

18 /18



Conclusion W

What have we learned?

® \We can model some combinatorics problems as dynamical systems, then use
ergodic theory to solve them

18 /18



Conclusion W

What have we learned?

® \We can model some combinatorics problems as dynamical systems, then use
ergodic theory to solve them

® More generally, we can apply fields of math to different fields

18 /18



Conclusion W

What have we learned?

® \We can model some combinatorics problems as dynamical systems, then use
ergodic theory to solve them

® More generally, we can apply fields of math to different fields

® |t can be useful to re-prove results using different approaches
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